Explainable Al For Source
Code Applications

DEsiGN DocuMENT

SDMAY25-30

Client: Dr. Ali Janesari
Advisor: Arushi Sharma

Team:
Manijul Balayar
Sam Frost
Akhilesh Nevatia
Ethan Rogers
Rayne Wilde

sdmay25-30@iastate.edu
https://sdmay25-30.sd.ece.iastate.edu/

Revised: 5/04/2025

Executive Summary

Project Summary

Our project focused on enhancing the interpretability and explainability of large language models
(LLMs) trained on source code. As these models become increasingly integral in software
development tasks—such as code completion, error detection, and automated code
generation—their "black-box" nature poses significant challenges. Developers and researchers often
struggle to understand the reasoning behind the models' outputs, which can lead to mistrust,
inefficiencies, and potential errors in critical software systems.

Problem Importance

The opaque decision-making processes of LLMs hinder their effective integration into software
development workflows. Without clear insights into how these models interpret code and generate
outputs, it becomes difficult to ensure code reliability, maintainability, and security. Improving
model transparency is essential for building trust, facilitating debugging, and enhancing
collaboration between Al systems and human developers.

Key Design Requirements
Our primary design requirements were:

e Scalability and Efficiency: The library must handle large datasets and complex models
efficiently, optimizing computational resource usage.

e Modularity and Maintainability: The library must be a structured, installable Python
library following best coding practices (PEP8 guidelines) for ease of maintenance and
expansion.

e Comprehensive Functionality: The library must include modules for activation
extraction, clustering algorithms, automated labeling, and visualization tools.

e High-Performance Computing (HPC) Compatibility: The library must operate
effectively in HPC environments to leverage powerful computational resources.

e Ethical Standards Compliance: The team must adhere to ethical guidelines and
engineering standards to address biases and promote responsible Al practices.

Design Overview

We developed a Python library that provides tools for latent concept analysis of code-based LLMs.
Key approaches and technologies included:

e Activation Extraction Module: Extracted neuron activations from specific layers of LLMs
using NeuroX and related extraction techniques, enabling analysis of internal model
representations.

e (lustering Algorithms: Implemented multiple algorithms, including K-means, BIRCH,
Agglomerative Clustering, Leaders Clustering, and Hyperbolic Clustering, to group similar
activations and uncover latent code concepts.

o Code Parsing with Tree-sitter: Parsed source code across multiple programming
languages, generating abstract syntax trees (ASTs) for structured analysis.

e Automated Labeling: Leveraged large language models and prompt optimization
techniques (e.g., DSPY2) to automatically label code clusters, significantly reducing manual
effort.

e Visualization Tools: Developed graphical interfaces featuring interactive sunburst and
dendrogram visualizations (built with Dash, Plotly, and SciPy) to help users interpret
clustering results and model behaviors.

e HPC Integration: Adapted the library for use on HPC clusters like Iowa State's Nova,
optimizing for parallel processing and large-scale data handling.

Delivered Functionality
To date, we have:

e Refactored Existing Code: Adapted scripts from the CodeConceptNet library, enhancing
structure and compliance with best coding practices.

o Implemented Core Modules: Completed robust implementations of data parsing,
activation extraction, clustering algorithms, and automated labeling modules.

e Integrated HPC Compatibility: Configured and validated the library to effectively run on
HPC clusters, addressing performance and scalability requirements.

® Web Application: Developed and deployed a Flask-based Python web application using
Dash, Plotly, and SciPy to visualize activation data via interactive sunburst and dendrogram
diagrams.

® Focused on Ethical Practices: Consistently incorporated ethical considerations, adhering
to relevant standards, and addressing biases in model interpretability.

Design Effectiveness

Our design meets the requirements by providing a modular, scalable library that facilitates in-depth
analysis of LLMs. We have validated functionality through testing and initial deployments on HPC
environments. User feedback and testing results indicate that the library effectively aids in
interpreting model behaviors, aligning with user needs for transparency and explainability.

Learning Summary

Development Standards & Practices Used

PEP8 - Style Guide for Python Code: Followed PEP8 guidelines for consistent and
readable Python code.

Agile Development Methodology: Employed Agile practices, including iterative sprints,
regular meetings, and adaptive planning.

Version Control with Git and GitLab: Used Git for version control and hosted our
repository on GitLab for collaboration, issue tracking, and CI/CD pipelines.

Continuous Integration/Continuous Deployment (CI/CD): Implemented CI/CD
pipelines using GitLab Runners and configuration files to automate testing and
deployment.

Software Testing Standards: Applied principles from IEEE 1028-2008 for software reviews
and audits, including unit testing, integration testing, and code reviews.
High-Performance Computing (HPC) Practices: Followed best practices for HPC
environments, optimizing resource utilization and job scheduling on clusters like Nova.
Ethical Standards in AI: Incorporated guidelines from ISO/IEC TR 24027:2021 to address
bias in Al systems and ensure ethical Al development.

Software Quality Standards: Referred to ISO/IEC 25010:201 for defining and evaluating
software quality attributes like reliability and usability.

Summary of Requirements

Functional Requirements:

Develop a scalable and maintainable Python library for latent concept analysis on source
code.

Implement activation extraction from neural network models trained on code.

Include efficient clustering algorithms to group activations and uncover latent code
concepts.

Provide support for parsing source code files in multiple programming languages, including
those not natively supported by Tree-sitter.

Develop an automated labeling module using large language models (LLMs) and prompt
optimization techniques.

Create visualization tools and a graphical user interface (GUI) for data analysis and
interaction.

Ensure compatibility with HPC environments for processing large datasets.

Non-Functional Requirements:

Achieve at least 60% code coverage with unit tests.
Follow PEP8 coding standards for Python code.

e Provide comprehensive documentation and usage examples.Optimize code for
performance and scalability.

e Address ethical considerations, including bias mitigation and adherence to professional
standards.

Constraints:

e Use Agile methodology for project management.

e Use lowa State’s GitLab for version control and project tracking.

o Complete the project within the given timeline and limitations.

Applicable Courses from lowa State University Curriculum

COM S 227: Introduction to Object-Oriented Programming
COM S 228: Introduction to Data Structures

COM S 31u: Design and Analysis of Algorithms

COM S 474/574: Introduction to Machine Learning

SE 329: Software Project Management

SE 339: Software Architecture and Design

ENGL 314: Technical Communication

New Skills/Knowledge acquired that was not taught in courses

Advanced Deep Learning Techniques: Working with large language models (LLMs) like
GPT and BERT, including fine-tuning and prompt engineering.

High-Performance Computing (HPC): Gained experience with HPC environments,
including job scheduling with SLURM and optimizing code for parallel execution on
clusters like Pronto.

Tree-sitter and Code Parsing: Learned to use Tree-sitter for parsing source code and
extending its capabilities to support languages and constructs not natively handled, such as
OpenMP.

Ethical Al Standards: Familiarized with ISO/IEC TR 24027:2021 guidelines for addressing
bias in Al systems and applying ethical considerations in Al development.

Automated Labeling Techniques: Developed methods for automated dataset labeling
using LLMs and prompt optimization, including the use of DSPY>.

Advanced Clustering Algorithms: Explored and implemented clustering algorithms

beyond standard coursework, such as BIRCH and agglomerative clustering.

Table of Contents

i. Executive Summary

ii. Learning Summary

1. Introduction
1.1. PROBLEM STATEMENT
1.2. INTENDED USERS

2. Requirements, Constraints, And Standards
2.1. REQUIREMENTS & CONSTRAINTS

2.2. ENGINEERING STANDARDS
3 Project Plan
3.1 Project Management/Tracking Procedures
3.2 Task Decomposition
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
3.4 Project Timeline/Schedule
3.5 Risks And Risk Management/Mitigation
3.6 Personnel Effort Requirements
3.7 Other Resource Requirements
4 Design
4.1 Design Context
4.1.1 Broader Context
4.1.2 Prior Work/Solutions
4.3 Technical Complexity
4.2 Design Exploration
4.2.1 Design Decisions
4.2.2 Ideation
4.2.3 Decision-Making and Trade-Off
4.3 Final Design
4.3.1 Overview
4.3.2 Detailed Design and Visuals

4.3.3 Functionality

11

11

14
17
17
17
17
18
20
20
21
21
21
21
23
25
27
27
28
28
28
28
28

32

4.3.4 Areas of Challenge

4.4 Technology Considerations
5 Testing

5.1 Unit Testing

5.2 Interface Testing

5.3 Integration Testing

5.4 System Testing

5.5 Regression Testing

5.6 Acceptance Testing

5.7 User Testing

5.8 Results
6 Implementation
6.1 Design Analysis
7 Ethics and Professional Responsibility
7.1 Areas of Responsibility/Code of Ethics
7.2 Four Principles
7.3 Virtues
8 Conclusions
8.1 Summary of Progress
8.2 Value Provided
8.3 Next Steps
9 References
10 Appendices
Appendix 1 - Operation Manual / Code

Appendix 2 - Team Contract

32
33
33
34
34
35

35
36
36
37
37
38
39
39
39
41
42
43
43
44
44
44
45
45
45

Images/Tables

Image 3.4-a: 4910 Gantt Chart

Image 3.4-b: 4920 Gantt Chart

Image 3.4-c: GitLab Issues

Table 3.6-a: Personnel Effort Requirements - Research

Table 3.6-b: Personnel Effort Requirements - Implementation
Table 4.1.1: Broader Context (Design)

Image 4.3.2-a: Detailed Design Visual

Image 4.3.2-c: Web Application Home Page

Image 4.3.2-c: Sunburst Visualization Example

Table 7.1: Areas of Professional Responsibility/Codes of Ethics
Table 7.2: Four Principles (Ethics)

18
19
19
21
21
22
30
31
31
39
41

1. Introduction

1.1. PROBLEM STATEMENT

Developers are increasingly relying on artificial intelligence (Al) models, specifically large language
models (LLMs), to assist with writing, understanding, and optimizing code. However, these Al
models are often reduced to "black boxes," preventing users from achieving the understanding they
need to complete their work. Our project addressed this problem by making Al models that work
with source code more explainable and interpretable. We developed methods to automatically label
code datasets using tools that analyze code structure and patterns. By clustering and examining the
concepts that Al models learn from these datasets, we aligned them with human-understandable
code properties. This revealed the patterns and logic the Al uses, effectively opening up the black
box.

Peering into the LLM black box provided a drastically increased level of understanding with the
potential to impact various fields. Examples of this include (1) developers who use Al better
understanding why the LLM makes certain suggestions with newly added context, (2) developers of
Al models who need to peer inside their products to better design the next iteration for improved
performance, and (3) a more theoretical impact in inter-Al communication for self-learning and
self-testing.

1.2. INTENDED USERS

Client: Dr. Ali Jannesari/ISU Software Analytics and Pervasive Parallelism (SWAPP) Lab

We identified three main user personas who benefit from our solution. Due to the academic nature
of the project, our main users are researchers of various backgrounds and experience

1. ML Researchers and Engineers:
User Description:

Machine Learning (ML) researchers and engineers are professionals working on cutting-edge Al
technologies, particularly in areas such as generative Al and large language models (LLMs). These
individuals are often well-versed in deep learning, natural language processing (NLP), and
high-performance computing (HPC). Their roles require them to not only develop and deploy
models but also deeply understand the behavior of these models. A critical part of their work
involves interpreting complex model outputs and fine-tuning models to ensure their accuracy and
reliability. They are highly analytical, detail-oriented, and constantly seeking ways to improve model
performance and transparency.

Needs Statement:

ML researchers and engineers have a strong need for advanced tools to evaluate and interpret the
inner workings of models. While there are existing libraries for analyzing general ML models, there
is often a gap when it comes to interpreting deep NLP models or working with specific HPC

environments. They require a solution that can streamline the evaluation of ML models, providing
meaningful insights into how models handle large datasets, optimize parameters, and make
predictions. Additionally, they need a way to efficiently generate or analyze code in HPC
environments where current tools might be lacking or inefficient.

How They Benefit:

The product, by integrating functionalities such as activation extraction, clustering optimization,
and enhanced visualization, enables ML researchers to accelerate their analysis processes. It
addresses their needs by offering a tailored solution for evaluating the latent concepts that underlie
model behavior, improving interpretability, and speeding up experimentation cycles. This allows
researchers to focus on refining models and pushing the boundaries of Al, rather than being bogged
down by manual or inefficient analysis methods. In the context of the overarching problem
statement, this benefit aligns with the project’s goal of creating a tool that aids in the latent concept
analysis of source code. By offering a solution that meets these specific needs, the product ensures
that the models researchers build and work with are better understood, more interpretable, and
easier to improve.

2. Prompt Engineers and Researchers:
User Description:
User Description:

Prompt engineers and researchers are specialized professionals focusing on optimizing interactions
with Al models, particularly in the context of generative Al and large language models (LLMs). They
are responsible for designing and refining the input prompts that guide these models to produce
accurate, relevant, and high-quality outputs. These individuals are typically highly skilled in
understanding model architecture, NLP techniques, and the nuances of prompt construction. They
have a deep understanding of the context and intent behind prompts and are continuously
experimenting with prompt variations to enhance model performance and generate more coherent,
contextually appropriate responses.

Needs Statement:

Prompt engineers and researchers need sophisticated tools for evaluating and interpreting the
effects of their prompt designs on model behavior. In particular, they require mechanisms to
analyze how prompts influence model outputs, identify areas for improvement, and understand the
inner workings of deep NLP models. These users are often dealing with complex models, such as
LLMs, which require precise and well-constructed prompts to generate valuable outputs. A key
challenge is determining how specific prompt variations can impact the model’s understanding and
overall performance, which is critical for tasks such as model fine-tuning and ensuring ethical Al
behavior.

How They Benefit:

The product offers prompt engineers and researchers the tools necessary to streamline their prompt
evaluation processes. By providing features like activation extraction, clustering of model outputs

based on prompt variation, and detailed visualizations, it enables these users to deeply analyze how
prompts affect the behavior of generative Al models. This empowers them to quickly iterate on and
refine their prompt designs, ensuring that the models produce optimal results in real-world
applications. This benefit directly aligns with the overarching problem statement, as it contributes
to the broader goal of improving model interpretability and performance. The product helps
prompt engineers save time, improve their models’ reliability, and ensure that their designs are
driving meaningful, impactful outputs from advanced Al systems.

3. HPC Researchers:
User Description:

HPC researchers are professionals working on the intersection of machine learning (ML) and HPC
systems. These individuals focus on leveraging large-scale computing resources to run complex
simulations, process vast datasets, and evaluate advanced ML models such as Generative Al and
LLMs. HPC researchers are typically skilled in parallel computing, distributed systems, and
specialized hardware configurations like GPUs and TPUs. Their primary role is to optimize the
performance of ML models by using HPC resources to handle computationally intensive tasks,
which enables them to work with massive datasets and conduct detailed evaluations of model
interpretability and behavior at a scale that would be impractical with traditional computing.

Needs Statement:

HPC researchers need tools that enable them to utilize their high-performance infrastructure to
evaluate and interpret ML models effectively. They require the ability to run large-scale
experiments, process complex models (such as deep NLP models), and analyze model outputs in an
efficient manner. Their current challenge lies in the lack of streamlined, integrated tools that
support both model interpretability and high-performance computing. The existing solutions often
either lack scalability or do not offer deep insights into model behavior when applied in HPC
environments.

How They Benefit:

The product allows HPC researchers to capitalize on their high-performance systems to evaluate
and interpret ML models, including generative Al and deep NLP models. By providing features like
scalable activation extraction, clustering of large datasets, and tools for efficient parallel processing,
the product ensures that these users can conduct their research at scale without sacrificing
interpretability. This enhances their ability to derive meaningful insights from complex models,
improving both performance and understanding. This benefit aligns with the overarching problem
statement by supporting latent concept analysis in large-scale environments, ensuring that models
are interpretable even when operating with vast datasets and distributed systems. Ultimately, the
product empowers HPC researchers to unlock the full potential of their infrastructure, enabling
faster analysis and deeper insights.

11

2. Requirements, Constraints, And Standards

2.1. REQUIREMENTS & CONSTRAINTS

The primary goal was to develop a library that enables researchers and practitioners to perform
latent concept analysis on source code, offering functionalities from data input to visualization.
2.1.1 Functional Requirements (Specification)

a. Activation Extraction

- Requirement: The library shall provide methods to extract activation data from neural network
models.

- Users must be able to specify which layers or components of the model to extract activations from.
b. Clustering Algorithms

- Requirement: The library shall include efficient and maintainable clustering algorithms.

- Agglomerative Clustering: Improve implementation for better performance.

- K-means Clustering: Optimize methods for handling large datasets.

- Leaders Clustering: Ensure code is modular and reusable.

- BIRCH Clustering: Integrate smoothly into the existing framework.

- Hyperbolic Clustering: Refactor for better integration with overall clustering strategies.

- Documentation: Provide comprehensive documentation for all clustering algorithms.

c. Alignment and Metrics

- Requirement: The library shall provide tools for evaluating the alignment of clusters with known
concepts.

- Apply lexical and contextual criteria.

- Support enhanced alignment metrics (specifications to be provided).

- Functionality: Users must be able to specify which metrics to use for analysis.
d. Analysis Functionalities

- Requirement: Enhance analysis functionalities to provide deeper insights.

- Reporting: Generate comprehensive reports summarizing findings and insights.

12

- Custom Analyses: Enable users to perform tailored analyses based on specific requirements and
datasets.

- Functionality: Users must be able to analyze clustering results and visualize relationships between
clusters effectively.

e. Input Data Support

- Requirement: The library shall support additional input formats.

- Source code files for all languages supported by Tree-sitter.

- Support for OpenMP code (even though Tree-sitter does not currently support it) (constraint).
- Datasets in CSV and JSON formats.

- Functionality: Users must be able to load data efficiently and handle errors related to unsupported
formats.

f. Ground Truth Datasets Integration

- Requirement: Integrate ground truth datasets for validation purposes.

- Ontologies: Semantic ground truths for Software Engineering SE and HPC.
- Existing Datasets: SE and HPC downstream tasks.

- Static Analysis Tools: Incorporate Tree-sitter as part of the base pipeline.

- Functionality: Users must be able to access and utilize these datasets for enhanced analysis and
validation.

g. Model Interfaces

- Requirement: Introduce interfaces for additional models.

- Loading custom models from sources other than Hugging Face.

- Fine-tuning models, loading fine-tuned models, and performing experiments.

- Functionality: Users must be able to specify model parameters and configurations.
h. Automated Labeling

- Requirement: Implement automated labeling of clusters.

- Utilize LLM labeling with DSPY2 for automatic prompt improvement.

- Functionality: A GUI must be available for interacting with and editing existing datasets.

- Users must be able to define labeling strategies and incorporate manual labels as necessary.
i. Probing and Reverse Feature Engineering

- Requirement: Include functionalities for probing and reverse feature engineering.

- Functionality: Users must be able to extract meaningful features and relationships from latent
representations to improve model understanding and performance.

2.1.2 Usability Requirements

a. Documentation

- Requirement: Provide comprehensive documentation, including:

- Installation instructions.

- Usage examples.

- API references.

b. Example Scripts

- Requirement: Include example scripts demonstrating typical use cases.
2.1.3 Performance Requirements

a. Efficiency

- Requirement: The library must handle large datasets efficiently, minimizing computational
resource usage.

- Focus on optimizing clustering algorithms and data handling processes.

2.1.4 Testing Requirements

a. Unit Tests

- Requirement: Include unit tests for all major functionalities to ensure robustness and reliability.
b. Code Coverage

- Requirement: Achieve at least 60% code coverage in testing (constraint).

3

14

2.1.5 Constraints
a. Code Coverage

- Requirement: The library must achieve a minimum of 60% code coverage in its testing suite
(constraint).

b. OpenMP Support

- Requirement: The library must support OpenMP code, even though Tree-sitter does not currently
support it (constraint).

2.2. ENGINEERING STANDARDS

2.2.1 Why Standards?

Engineering standards are important, because they provide specific, detailed methods of using tools
in a safe and effective way. By providing common guidelines and specifications, these standards
help engineers create designs that are consistent in quality and can work seamlessly with other
products or systems, even if produced by different manufacturers. In addition to increased
performance and safety, engineering standards have the potential to reduce costs by preventing the
need to reinvent solutions, and promote innovation by allowing engineers to build upon established
foundations.

2.2.2 Key Standards

a. ISO/IEC 25010:2011 - Systems and Software Quality Requirements and Evaluation
(SQuaRE) - System and Software Quality Models

- Description: This standard defines a quality model for software and systems. It outlines
characteristics such as functionality, reliability, usability, efficiency, maintainability, and portability.
The model provides a structured approach to specifying and evaluating software product quality.

- Intended Purpose: The standard aims to ensure that software products meet the required quality
levels by providing a common framework for developers and stakeholders to assess and improve
software quality throughout the development lifecycle.

b. ISO/IEC TR 24027:2021 - Information Technology - Artificial Intelligence (AI) - Bias in Al
Systems and Al-Aided Decision Making

- Description: This technical report addresses the identification and mitigation of bias in Al
systems. It discusses types of biases that can occur in data and algorithms, their sources, and the
impact they may have on Al decision-making processes.

- Intended Purpose: The standard aims to promote fairness and transparency in Al systems by
providing guidelines to detect, evaluate, and reduce bias, thereby enhancing the trustworthiness
and ethical considerations of Al applications.

15

c. IEEE 1028-2008 - Standard for Software Reviews and Audits

- Description: This standard specifies the process for conducting software reviews and audits,
including inspections, walkthroughs, technical reviews, and management reviews. It defines the
roles, procedures, and outcomes expected from each type of review.

- Intended Purpose: The standard intends to improve software quality and project management by
providing structured methods for detecting and correcting defects, ensuring compliance with
requirements, and enhancing communication among team members.

2.2.3 Relevance
a. ISO/IEC 25010:2011

- Relevance: Our project involves developing software tools for auto-labeling datasets and
evaluating LLMs. Applying this standard helps us define and measure the quality attributes of our
software products, ensuring they meet user and stakeholder expectations.

- Specific Impact: By focusing on characteristics like reliability and usability, we can create robust
tools that are easy to use and maintain, which is crucial for the success and adoption of our project
deliverables.

b. ISO/IEC TR 24027:2021

- Relevance: Since our project deals with Al systems and decision-making processes, addressing bias
is essential. This standard provides us with guidelines to identify and mitigate biases in our models
and datasets.

- Specific Impact: Incorporating this standard ensures that our evaluations of LLMs are fair and
unbiased, which enhances the credibility and ethical standing of our project outcomes.

c. IEEE 1028-2008

- Relevance: Effective communication and quality assurance are vital in our project, especially with
multiple team members working on different components. This standard offers structured review
processes to improve collaboration and software quality.

- Specific Impact: By conducting regular software reviews and audits as per the standard, we can
identify defects early, ensure compliance with requirements, and facilitate better teamwork.

2.2.4 Other Standards

In discussing with our team, other standards were considered, but ultimately are not being
prioritized.

a. IEEE 829-2008 - Standard for Software and System Test Documentation

16

- Description: This standard provides a set of documents that cover the testing process, including
test plans, designs, procedures, and reports.

- Reasoning: This standard could potentially be important for structuring our testing
documentation to ensure thorough validation of our software components.

b. SO/IEC 27001:2022 - Information Security, Cybersecurity and Privacy Protection —
Information Security Management Systems — Requirements

- Description: This standard specifies requirements for establishing, implementing, maintaining,
and continually improving an information security management system.

- Reasoning: Given that we handle code datasets, some of which may be sensitive, applying this
standard would help in securing our data and managing risks related to information security.

While we are not fully adopting IEEE 829-2008 and ISO/IEC 27001:2022, we will still incorporate
essential elements from these standards where applicable to maintain good practices in testing
documentation and data security.

2.2.5 Implementation
a. ISO/IEC 25010:2011

- Quality Attribute Specification: We will define specific quality attributes for our software, such as
usability and reliability metrics for the auto-labeling pipeline.

- Quality Assessment: Develop procedures to assess these attributes regularly, using tools and
techniques like user testing and performance monitoring.

- Documentation: Maintain detailed documentation of quality requirements and assessment results
to guide ongoing improvements.

b. ISO/IEC TR 24027:2021

- Bias Identification Process: Establish a process to identify potential biases in our datasets and
models, including regular audits and reviews of data sources and labeling practices.

- Bias Mitigation Strategies: Implement techniques such as data balancing, algorithm adjustments,
and inclusion of diverse data samples to reduce bias.

- Transparency Measures: Document and communicate our efforts to address bias, enhancing the
transparency and ethical considerations of our project.

c. IEEE 1028-2008

- Structured Reviews: Schedule regular software inspections and walkthroughs to identify defects
and areas for improvement.

17

- Audit Trails: Keep detailed records of review findings, decisions made, and actions taken to
provide accountability and track progress.

3 Project Plan

3.1 PROJECT MANAGEMENT/ TRACKING PROCEDURES

Our team adopted the Agile methodology due to the adaptive nature of our project. Agile's iterative
cycles and emphasis on flexibility aligned well with our field, where evolving customer needs and
shifting requirements required an adaptable approach. Agile allowed us to respond to changes
efficiently without disrupting significant portions of the project.

To track our progress, we utilized GitLab, which provided detailed task decomposition, tracking,
and workflow automation through its CI/CD pipelines. GitLab also offered wikis and robust
issue-tracking capabilities, facilitating organized project documentation and streamlined
development processes. For remote, asynchronous communication, we relied on a dedicated
Discord channel, enabling our team to stay connected and aligned despite varying schedules.

3.2 TAsk DECOMPOSITION

We utilized GitLab's built-in features for task decomposition. Epics represented overarching project
requirements and goals, which were further broken down into Milestones capturing key functional
components and deliverables. Each Milestone was subdivided into Issues—specific, actionable tasks
assigned to team members to complete Milestones.

We tracked Issues on an issue board, assigning each Issue to relevant Milestones and Epics. This
hierarchical organization helped us manage interdependencies among tasks, systematically
addressing all project aspects. Progress on Issues was continuously monitored within GitLab,
providing a clear log of task completion and overall project advancement.

We mapped the linear progression of completed requirements to our sprint cycles, maintaining
alignment with Agile methodology, ensuring that the project's development remained responsive to
changes.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

In our Agile development process, milestones were refined iteratively with each sprint, integrating
regular progress updates and customer feedback. Each Agile cycle comprised two main sprints:

18

e Design Sprint: Focused on implementing feedback from the previous cycle and planning
upcoming tasks. We reviewed and adjusted designs to align with customer input, creating a
roadmap for implementation.

e Implementation Sprint (MVP): Updated design documentation based on customer
feedback and implemented planned tasks. This included creating and testing minimum
viable products meeting customer requirements.

Tasks were considered complete once they successfully met sprint-specific customer requirements.
Progress metrics were issue-based, with individual Issues and Milestones serving as checkpoints.
This allowed accurate progress measurement, ensured quality, and refined milestones iteratively
based on evolving requirements.

Due to the adaptive nature of this project, precise success metrics were developed iteratively. Much
of our work involved defining metrics tailored specifically to LLMs and generative Al models. As
these metrics evolved through ongoing customer feedback, they guided milestone evaluation and
overall project success.

3.4 PROJECT TIMELINE/SCHEDULE

Due to the project's nature and Agile adoption, our project timeline remained flexible. Essential
features were prioritized, while some requirements moved in or out of scope as necessary.

Image 3.4-a and 3.4-b illustrates our timeline for completing subtasks, consistent with Agile
practices. Critical implementation tasks were defined and tracked within GitLab.

Image 3.4-a: 4910 Gantt Chart

19

Spint0 Sprint 1 | Spint 2 Sprint3 Spint 4 Sprint5. | Speint 6 | Sprint7 | Speint 8

Comprehensive 4610 Demo

Web App

Inplementaton| Design | Implementaton| Design | mplementaton| _ Design | mplementation| _ Design | mplementation| Design | mplementaton| _ Design | implemeniatin] _Design [Implementaton| _Design | implementation|

(2.1) Adgt partily inshed web zpp

12.2) Base Functioralty

(2.2) Containerizationlinfastuicure

(24) Visuaization

(25) Additionsl Functionalty

{2.6) Documentation for All

Ading New Features (4)

(41) Expaning to new inputs

14.2) Using new models

(43) New activation extraction methads

{4.4) Cluster auto-abeling feature

(4.5) New alignmen: metrics

(4.8) Support for HPC datasets

(47) TBD. a5 2ble

Usabilty Requirements (5)

(5.1) Documention

(5:2) Guies & Examples

(63) Wicis

(5:4)Rezdme's

55) Macnine | Enviroment Imitations documentan

Performance Requirements (8)

(5.1) local machine eficiency & metrcs

(62) HPC eficiency & metries

(8.3} Cloud Colab effiency & metrics

(8.4) CLI performance metrics

Testing Requirements (7)

(7.1) Unit Testng

(7.2) Regression Testing

7.2) Code coverage (60%)

Image 3.4-b: 4920 Gantt Chart

[P Unit Testing
#9 - created 6 days ago by frost2

[V Pipeline Integration
#8 - created 6 days ago by kbouwman
To Do

& Nov 7, 2024

[P HPC Start
#7 - created 6 days ago by kbouwman
To Do

& Nov 7, 2024

[V Auto Labelling
#6 - created 6 days ago by kbouwman
To Do

& Nov 7, 2024

[P Activation
#5 - created 6 days ago by kbouwman
To Do

& Nov 7, 2024

[V Clustering interactive Visualizations
#4 - created 6 days ago by kbouwman & Nov 7, 2024

To Do

[7 Configuration for Pipeline Automation
#3 - created 6 days ago by kbouwman & Nov 7, 2024

To Do

[P Clustering Analysis
#2 - created 6 days ago by kbouwman
To Do

& Nov 7, 2024

[} Clustering
#1 - created 6 days ago by kbouwman
To Do

£ Nov 7, 2024

Image 3.4-c: GitLab Issues

20

3.5 Risks AND Risk MANAGEMENT/MITIGATION

We identified several risks potentially impacting the project's success and delivery timeline,
including rapid advancements in artificial intelligence, technical challenges with AST tools and
LLMs, and time constraints. Each risk was analyzed with a probability estimate and a
comprehensive mitigation plan developed accordingly. For high-probability or high-impact risks, we
established alternative solutions, ensuring project resilience.

1. Risk of Rapid Advancements in Al Rendering Current Approaches Obsolete

e Risk Probability: 0.6
e Mitigation:
o Conducted continuous monitoring of Al research through weekly discussions.
Agile allowed project adjustments to incorporate beneficial emerging technologies
promptly.

2. Technical Challenges with AST Tools or Large Language Models (LLMs)

e Risk Probability: 0.7
e Mitigation Plan:
o Engaged in early prototyping and thorough testing. Maintained alternative tools
ready to ensure project continuity and effectiveness in case primary tools
encountered issues.

3. Time Constraints Impacting Project Delivery and Quality

e Risk Probability: 0.8
e Mitigation Plan:

o Adhered strictly to incremental Agile development with clearly defined sprints.
Established regular communication loops with clients and team members to
proactively manage scope and address issues swiftly, ensuring project timelines
were maintained without sacrificing quality.any deviations from the original plan
are identified and addressed swiftly, keeping the project on track.

3.6 PERSONNEL EFFORT REQUIREMENTS

Due to Agile practices and the evolving project scope, precise task-based person-hour estimates
were challenging. Instead, we estimated efforts using a general sprint-based framework:

21

Table 3.6-a

Design Sprint (1 week) Time (hrs /person) Description

Feedback 1-2 Taking client feedback, and implementing
requested changes.

Design 4-5 Researching Technologies, choosing tools,
building an implementation plan

Implementation 2-3 Starting to write initial code, finding
pain-points to discuss before the

implementation sprint

Table 3.6-b

Implementation Sprint (1 week) | Time (hrs / person) | Description

Feedback 1-2 Taking client feedback, and implementing
requested changes.

Design 12 Further Research, discussion within team

Implementation 5-6 Writing code, active testing, building
functional subsets of final deliverable

3.7 OTHER RESOURCE REQUIREMENTS

Critical resources utilized included lowa State’s Nova HPC clusters, crucial for testing in realistic
HPC environments used by our intended users. Additionally, we utilized ECpE’s (Electrical and
Computer Engineering) GitLab, providing enhanced security and specialized functionality. Access
to current research and projects on LLMs or DNNs was imperative, as each new analytical method
potentially enhanced our pipeline’s capabilities and clarity of results.

4 Design
4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our project was situated at the intersection of software engineering and artificial intelligence,
enhancing the explainability and interpretability of large language models (LLMs) used in code
analysis and generation. Our intended audience included machine learning researchers, prompt

22

engineers, HPC researchers, and software developers who utilize Al models for code-related tasks.

By improving Al transparency, our project benefits the broader software development community

and indirectly impacts end-users relying on reliable and secure software applications.

cultural, and

Al practices, our project aligns with

Table 4.1.1
Area Description Examples
Public health, Our project enhances the reliability and | - Reducing risks in medical
safety, and safety of software systems by making Al | devices: By enabling developers to
welfare models more interpretable. By reducing | understand Al-generated code, we
software errors, especially in help prevent software failures in
safety-critical applications, we positively | medical equipment, ensuring
affect the well-being of users and patient safety.
communities dependent on such - Enhancing automotive safety:
software. Improved code understanding | Improved Al interpretability aids
leads to more secure and efficient in developing safer autonomous
software solutions. driving systems.
- Improving cybersecurity:
Better understanding of Al models
helps identify and mitigate
vulnerabilities in software.
Global, By promoting transparency and ethical - Facilitating international

collaboration: Tools that improve

computationally intensive tasks that may
increase energy consumption, it also has
the potential to reduce the
environmental impact of software
development in the long term. By
improving code efficiency and reducing
development time, we contribute to
lowering the overall environmental
footprint associated with software
processes.

social global efforts to foster responsible Al Al explainability can be used by
development. It supports developers developers globally, bridging
worldwide, regardless of cultural or language and cultural gaps.
language backgrounds, in understanding | - Supporting ethical standards:
Al tools, thus encouraging inclusivity Our project helps adhere to
and collaboration in the global tech professional codes of ethics by
community. making Al decisions transparent.
- Building trust in AI: Enhancing
interpretability reduces the "black
box" perception, fostering societal
trust in Al technologies.
Environmental | While our project involves - Energy consumption in HPC

clusters: High-performance
computing required for model
analysis increases energy usage.

- Reducing development cycles:
Improved tools can lead to faster
development and less
resource-intensive processes.

- Promoting efficient coding
practices: By understanding Al
models better, developers can write

23

more efficient code, indirectly
reducing energy consumption.

Economic Our project can lead to significant cost - Lowering development costs:
savings in software development by By reducing debugging time,
enhancing developer productivity and companies save resources.
reducing time spent on debugging and - Accelerating time-to-market:
code comprehension. It also opens up More efficient development
new economic opportunities in the processes enable faster product
market for Al explainability tools and releases, increasing
services, potentially contributing to job | competitiveness..
creation and economic growth in the - Economic growth: Improved
tech industry. tools can boost productivity across

the industry, contributing to

economic advancement.

4.1.2 Prior Work/Solutions
Background and Literature Review

The field of explainable artificial intelligence (XAI) has become increasingly important, especially
regarding large language models (LLMs) trained on source code. Understanding how these models
make decisions is crucial for developers to trust and effectively utilize them in software engineering
tasks. Several prior works have attempted to address the challenges of interpreting and analyzing
neural networks in the context of code.

One significant tool in this domain is NeuroX, a toolkit designed for analyzing individual neurons
in neural networks by extracting and visualizing activations [1]. NeuroX facilitates the examination
of hidden representations within neural networks, aiding in the interpretation of model behaviors.
However, while NeuroX provides general tools for neural network analysis, it is not specifically
tailored for code-based LLMs.

Another relevant project is Code2Vec, which introduces a method for representing code snippets as
continuous distributed vectors and utilizes attention mechanisms to highlight important code
elements influencing the model's predictions [2]. Code2Vec focuses on code classification tasks and
offers some level of interpretability through attention weights but does not provide a
comprehensive framework for latent concept analysis in LLMs.

Additionally, LIME (Local Interpretable Model-agnostic Explanations) has been used to
explain predictions of machine learning classifiers, including in some code analysis contexts [3].
LIME approximates the model locally with an interpretable model to explain individual predictions.
However, its application to deep learning models handling source code is limited due to the
complexity and high dimensionality of such models.

24

Similar Products and Solutions

e GitHub Copilot: An Al coding assistant developed by GitHub and OpenAl that suggests
code snippets and functions based on the context. While Copilot is powerful in code
generation, it lacks transparency in how suggestions are generated, providing minimal
insight into the underlying decision-making process of the model.

e DeepExplain: A unified framework that implements various gradient-based attribution
methods for explaining deep neural networks [4]. While DeepExplain offers tools for model
interpretability, it is primarily focused on image data and does not directly address
code-specific challenges.

Advantages and Shortcomings of Prior Work

NeuroX
e Pros:
o Provides tools for neuron-level analysis of neural networks.
o Supports activation extraction and visualization.
e Cons
o Not specifically designed for code-based models.
o Limited support for handling source code structures and syntax.
CodezVec
e Pros:
o Introduces code representation techniques using distributed vectors.
o Utilizes attention mechanisms for partial interpretability.
e Cons
o Focused on code classification tasks.
o Does not offer comprehensive tools for activation extraction or clustering in LLMs.
LIME
e Pros:
o Model-agnostic and can be applied to any classifier.
o Helps explain individual predictions.
e Cons:

o Less effective with complex, high-dimensional models like LLMs.
o Limited applicability to sequential and structured data like source code.

Differentiation of Our Project

Our project addressed existing gaps by developing a specialized library emphasizing interpretability
specifically for LLMs trained on source code. We successfully delivered a comprehensive solution
comprising activation extraction, efficient clustering algorithms, automated labeling, and
visualization tools tailored explicitly for code analysis.

25

Pros of Our Solution:

o Code-Specific Design: Specifically handles source code intricacies, syntax, and semantics
across multiple programming languages.

e Comprehensive Pipeline: Provides an integrated workflow from data parsing to
visualization.

e Support for Advanced Features: Includes preprocessing for OpenMP directives and
optimized compatibility with HPC environments.

e Automated Labeling: Employs LLMs and DSPY2 for scalable automatic labeling.

Cons of Our Solution:

e Development Maturity: Initial limitations in features compared to established libraries.
o Resource Requirements: Significant computational resources needed for large-scale
processing.

Works Cited:

[1] V. Dalvi, A. Gautam, N. Durrani, H. Sajjad, Y. Belinkov, and J. Glass, "NeuroX: A Toolkit for
Analyzing Individual Neurons in Neural Networks," in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics (Demonstrations),
Minneapolis, MN, USA, Jun. 2019, pp. 169-174.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, "code2vec: Learning Distributed Representations
of Code," in Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, Article 40, Jan.
2019.

[3] M. T. Ribeiro, S. Singh, and C. Guestrin, "“Why Should I Trust You?” Explaining the Predictions of
Any Classifier," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, Aug. 2016, pp. 1135-1144.

[4] M. Ancona, E. Ceolini, C. Oztireli, and M. Gross, "Towards Better Understanding of
Gradient-Based Attribution Methods for Deep Neural Networks," in 6th International Conference on
Learning Representations (ICLR), Vancouver, Canada, Apr. 2018.

4.1.3 Technical Complexity

Our project demonstrated substantial technical complexity through the integration of multiple
sophisticated components, each utilizing distinct scientific, mathematical, and engineering
principles. These modules collectively addressed challenges at or above current industry standards.

Data Input Module

e Principles Involved: Compiler Design, Abstract Syntax Trees (ASTs)

26

e Description: Parses and preprocesses various source code formats—including raw files,
OpenMP code, and structured data (CSV/JSON)—using Tree-sitter to create syntax-aware
ASTs, enabling structured code analysis across multiple languages.
Model Interface Module

Principles Involved: Neural Networks, Deep Learning, Model Management
Description: Provides a flexible interface for loading and configuring neural network
models from repositories (e.g., Hugging Face) or custom-trained sources, facilitating
fine-tuning and tailored analysis.

Activation Extraction Module

e Principles Involved: Neural Networks, Deep Learning, High-Performance Computing
e Description: Extracts neuron activation data from specified layers of large language
models (LLMs), optimized for efficient performance in local and HPC environments to
ensure scalability with extensive datasets.
Clustering Module
e Principles Involved: Cluster Analysis, High-Dimensional Data Processing
e Description: Implements diverse clustering algorithms, including K-means, BIRCH,

Agglomerative, Leaders, and Hyperbolic Clustering, to group activation patterns
representing latent concepts within neural network models.

Alignment and Metrics Module

Principles Involved: Statistical Analysis, Evaluation Metrics

Description: Employs statistical metrics such as purity scores and adjusted Rand indices to
evaluate the quality and alignment of generated clusters against labeled datasets, enabling
detailed and robust performance assessments.

Analysis and Visualization Module

Principles Involved: Data Visualization, Human-Computer Interaction, Web
Development

Description: Provides interactive visualizations, notably sunburst and dendrogram
diagrams, generated using Dash, Plotly, and SciPy within a Python web application built
using Flask and deployed via Docker. These visualizations help users intuitively explore
hierarchical relationships and interpret complex cluster structures.

Automated Labeling Module

Principles Involved: Natural Language Processing (NLP), Prompt Engineering
Description: Automates cluster labeling using large language models (LLMs) and
optimized prompts (via DSPY2), complemented by a GUI allowing interactive refinement,

27

significantly reducing manual effort and enhancing interpretability.

Probing and Reverse Feature Engineering Module

e Principles Involved: Feature Engineering, Interpretability Analysis, Neural Networks

e Description: Enables users to systematically probe and analyze neuron activations,
facilitating the extraction and reverse-engineering of meaningful latent features to enhance
understanding of model decision-making and concept interpretation.

Challenging Requirements:

e Model Interpretability: Enhancing transparency of LLMs trained on code, addressing the
inherent challenge of understanding "black box" Al behavior.

e Automated Dataset Labeling: Developing precise, scalable automated labeling
methodologies using NLP and prompt engineering techniques.

e Multi-Language Parsing: Extending robust parsing capabilities across diverse
programming languages and syntactic constructs, including OpenMP directives.

e Performance and Scalability: Optimizing computational efficiency and scalability,
particularly within HPC environments.

Justification:

The integration of these modules demands expertise in advanced machine learning, statistical
evaluation, compiler theory, visualization techniques, and HPC methodologies, collectively
representing significant technical sophistication. The project's comprehensive scope positions it
firmly at the intersection of current academic research and cutting-edge industry standards.

4.2 DESIGN EXPLORATION
4.2.1 Design Decisions

Consolidating Distributed Libraries

Initially, foundational code was dispersed across multiple locations. We consolidated these into a
single standardized library for enhanced maintainability and scalability, facilitating easier
collaboration and future expansion.

Developing a Standardized Library

We standardized the library structure and coding style to enable seamless integration of future
updates and uniform application of optimizations, ensuring project scalability.

Defining Machine Testing Parameters

28

We established testing parameters early in the process for compatibility across local and distributed
computing environments, optimizing the library’s performance and reliability.

4.2.2 Ideation
To support OpenMP code parsing—since Tree-sitter lacks native support—we brainstormed
potential solutions and identified five options:

e Extend Tree-sitter with OpenMP Grammar: Develop a custom grammar to include
OpenMP constructs.

Use an Alternative Parsing Library: Find a different parser that natively supports OpenMP.
Preprocess Code to Remove OpenMP Directives: Strip OpenMP directives before parsing.
Integrate Compiler Front-Ends (e.g., Clang): Use compiler tools to parse OpenMP code.

Combine Tree-sitter with an OpenMP-Specific Parser: Use Tree-sitter alongside a
specialized OpenMP parser.

4.2.3 Decision-Making and Trade-Off

We evaluated each option based on implementation complexity, maintenance, performance, and
compatibility. Option 3—Preprocess Code to Remove OpenMP Directives—was chosen because it is
simple to implement, maintains compatibility with our existing system, and requires minimal
maintenance. While it may exclude OpenMP-specific details, this approach efficiently allows us to
support OpenMP code within our project's constraints.

4.3 FiNAL DESIGN
4.3.1 Overview

We developed a structured, adaptable Python library supporting scalable software solutions. The
library adhered to PEPS style guidelines and ISO 27001 standards for robust security. It is installable,
customizable, and equipped with a versatile Command Line Interface (CLI). The library was
optimized for both local and high-performance computing environments, ensuring efficiency in
complex, data-intensive workflows.

4.3.2 Detailed Design and Visuals

Our project delivered a comprehensive Python library tailored for latent concept analysis of source
code, seamlessly integrating various modules to provide a complete analytical pipeline. The detailed
architecture of the system consisted of several interconnected components, each serving a specific
role within the pipeline.

Data Input Module:
The pipeline began with the Data Input Module, designed to efficiently handle various data

29

formats. This module allowed users to load and preprocess datasets, including raw source code files,
OpenMP code (preprocessed to ensure compatibility with Tree-sitter), and structured datasets
provided in CSV or JSON formats. Once loaded, the data was parsed into Abstract Syntax Trees
(ASTs) using the Tree-sitter parser, enabling structured, syntax-aware analysis of source code across
multiple programming languages.

Model Interface Module:

The Model Interface Module provided a flexible and robust mechanism for loading neural network
models. Users could select from pre-trained models available from repositories like Hugging Face,
or load custom models they had trained independently. Additionally, this module offered support
for fine-tuning and adjusting model parameters, enabling tailored model configurations to meet
specific analytical requirements.

Activation Extraction Module:

After models were loaded, the Activation Extraction Module systematically extracted neuron
activation data from specified layers within these neural network models. These activations,
representing latent representations learned by the models, served as inputs for subsequent analysis
steps. The extraction process was optimized to run efficiently both locally and on HPC
environments, ensuring scalability.

Clustering Module:

Extracted activation data was then processed by the Clustering Module, which implemented
multiple clustering algorithms, such as K-means, BIRCH, Agglomerative Clustering, Leaders
Clustering, and Hyperbolic Clustering. These algorithms grouped similar activation patterns into
clusters, representing latent concepts or code features learned by the neural network models. The
selection of algorithms allowed users to choose the most appropriate clustering method for their
specific dataset characteristics and analytical goals.

Alignment and Metrics Module:

This module provided quantitative analysis to assess the effectiveness and meaningfulness of the
generated clusters. It compared clustering results against ground truth datasets, applying statistical
metrics such as purity scores and adjusted Rand indices to measure alignment and cluster quality.
Users could configure and specify which metrics to apply, facilitating detailed and customized
evaluations of clustering performance.

Analysis and Visualization Module:

To help interpret and explore clustering results, the Analysis and Visualization Module provided a
suite of interactive visual tools. Users can generate sunburst and dendrogram charts to visually
assess the relationships between clusters, examine the distribution and quality of clusters, and
identify meaningful patterns. This graphical interface significantly improved usability, making the
results more accessible and actionable for users. This interface was delivered in the form of a
Python web application.

The web application was built using Python and Flask, deployed via Docker containers hosted on
Iowa State University's servers. It employs Dash, Plotly, and SciPy libraries to generate interactive
visualizations, notably sunburst and dendrogram diagrams. These visualizations allow users to

30

intuitively explore hierarchical relationships and cluster structures within activation data,
significantly enhancing the interpretability of latent concepts derived from large language models.

Automated Labeling Module:
The Automated Labeling Module leveraged large language models (LLMs), specifically employing
DSPY2 for optimized prompt generation. This approach automated the labeling process for clusters,
dramatically reducing manual effort and improving scalability. Additionally, a user-friendly
graphical user interface (GUI) allowed for interactive refinement of automatically generated labels,
enabling users to incorporate domain-specific knowledge or correct inaccuracies as needed.

Probing and Reverse Feature Engineering Module:
Lastly, this module allowed users to delve deeper into model interpretability by enabling extraction
of meaningful features from latent representations. By systematically probing activations and
analyzing their relationships, users could reverse-engineer features, gaining deeper insights into
model decision-making processes and enhancing overall understanding of how the model

interprets and generates source code.

Source code

RAID

Tokens, Labels,
Activations

Process
Activations

Points and

vocab vectors

Clustering
algorithm

Engineered
prompt

|

LLM
Labelling

Clusters-file.txt

annotations.json

Clustering
models, linkage
matrix

|

Evaluation

Alignment

—

cluster_statistics,etc

Wisualization

Image 4.3.2-a: Module Pipeline

31

Explainable Al Home About Visualization GitLab Repository

Explainable Al For Source Code
Applications

Visualize how Al makes sense of source code.

Go to Dashboard

Learn more about the project and the View our GitLab repository for learning more
functionality of this app. about the code itself.

Image 4.3.2-b: Web Application Home Page

Layer layer3 - Complete Hierarchical Cluster Structure

Top-level
Merge 24177

]
>
u
-l
. >
Mid-level .5
=
o
o
L
=

Tokens

Image 4.3.2-c: Sunburst Visualization Example

32

4.3.3 Functionality

We provided users with three primary interaction modes: local installation, cloud execution (e.g.,
Google Colab), and execution on Nova HPC clusters.

Installation

To install, use the following command:

pip install cocoa

Packaging the Project
To generate a pip-installable tarball and wheel file:
1. Run the following command to create the distribution files:
python3 setup.py sdist bdist wheel

2. Youwill find the .tar.gz and .whl files in the dist/ directory.

Installing the Package
To install the package from the generated wheel file, use:

pip install dist/cocoa-0.0.1-py3-none-any.whl

Usage
Once installed, you can use the command-line interface. For example, to extract activations:

cocoa extract activations --model bert-base-uncased --input input.txt
—-—-output output.txt

This will run the activation extraction from the specified model and save the results to the output
file.

4.3.4 Areas of Challenge

We encountered a variety of obstacles as the project progressed, particularly around managing the
sheer volume of activation data and ensuring our system remained responsive across local, cloud,
and HPC environments. Fine-tuning our automated labeling process introduced variability that

33

required repeated adjustments to prompts and occasional manual review to maintain quality.
Extending our parsing framework to handle unconventional or emerging code constructs also
proved nontrivial, necessitating additional preprocessing steps and tool refinements. Balancing the
complexity of clustering and alignment metrics with the need for clear, human-interpretable results
led to ongoing experimentation with different evaluation strategies. Finally, coordinating
dependencies and resource allocation across diverse platforms highlighted the importance of robust
configuration management and scalable deployment practices.

4.4 TECHNOLOGY CONSIDERATIONS

We integrated several distinct technologies, carefully evaluating their strengths, weaknesses, and
trade-offs:

e Nova HPC Clusters: Provided scalability for analyzing large datasets.
Neural Network Models: Enabled flexible model loading and customization.
Clustering Algorithms: Offered versatile algorithm choices suitable for varying data
structures.

e Data Parsing with Tree-sitter: Facilitated comprehensive language support despite
limitations with OpenMP directives.

e Automated Labeling (LLMs & DSPY2): Enhanced labeling efficiency despite potential
external dependencies.

Strengths:

e Efficiency: Accelerates the labeling process, reducing manual effort.
e Quality Improvement: DSPY2 enhances prompt effectiveness, leading to better labeling
outcomes.

Weaknesses:

e Bias Risk: LLMs may introduce biases into the labeling process.
e Dependence on External Models: Reliance on LLMs may pose challenges if models change
or become unavailable.

Trade-offs:

e Increased efficiency versus potential bias and reliance on external services.

5 Testing

Testing was a critical component throughout our project's lifecycle, ensuring each aspect of the
software library functioned correctly and adhered to specified requirements. We executed a
comprehensive testing strategy tailored explicitly to our project design and requirements. Frequent,

34

automated testing aligned closely with our Agile development methodology, enabling prompt issue
identification and resolution.

Our testing approach centered on test automation using continuous integration and continuous
deployment (CI/CD) pipelines with GitLab runners. This practice maintained code quality, ensured
at least 60% code coverage, and prevented new code from breaking existing functionality.

Unique testing challenges included handling large datasets, integrating various machine learning
models, and ensuring compatibility with HPC environments. We addressed these with specialized
tests to validate performance, scalability, and correctness across different computing environments.

5.1 UNIT TESTING

Unit testing verified individual functions and methods within modules, ensuring isolation of each
component's correctness.

Implementation:
Within the . . /src directory, two subdirectories were established:

e cocoa: Contains library source code.
e cocoaTest: Mirrors cocoa's structure, containing corresponding unit tests.

Tests utilized Python’s unittest framework, with each module in cocoa paired with a dedicated

test module in cocoaTest.

Coverage Goals:
We achieved our stated goal of at least 60% code coverage using tools like coverage.py

integrated into the unittest framework.

5.2 INTEREACE TESTING
Interface testing validated correct interactions between various modules and system components.
Interfaces Tested:

e Data Input and Parsing Interface: Interaction between data loading and parsing
modules.

e Model Interface: Interaction between user-defined models and activation extraction.
Clustering Interface: Flow of activations into clustering algorithms.
Evaluation Interface: Transmission of clustering results to alignment and metrics module.

35

e Automated Labeling Interface: Integration between clustering modules and automated

labeling with LLMs.

Testing Approach:

e Employed integration tests to confirm accurate data transfer between modules.

5.3 INTEGRATION TESTING
Integration testing ensured modules functioned collectively, focusing on critical paths.
Critical Integration Paths Tested:

¢ End-to-End Data Flow:
Data input — Parsing — Activation extraction — Clustering — Labeling — Evaluation.
e HPC Environment Compatibility:
Integration tests performed on Nova HPC clusters to validate distributed computing
functionality.

Testing Strategy:

e Simulated real-world use cases with representative datasets.
e Automated scripts execute tests locally and on HPC environments.
e Outputs at each stage were compared against expected results.

Tools Utilized:

e GitLab CI/CD pipelines automated integration tests.

5.4 SySTEM TESTING

System testing evaluated the fully integrated system to confirm overall compliance with project
requirements.

System-Level Testing Strategy:

e Conducted realistic full-scale tests processing large code datasets, supporting multiple
programming languages, and generating comprehensive analysis reports.
e Verified compliance with non-functional requirements: performance, scalability, and

usability.

36

Requirements Coverage:

e Functional Requirements: Verified each specified functionality (activation extraction,
clustering, labeling, visualization, etc.).

e Usability Requirements: Evaluated the command-line interface (CLI) for
user-friendliness and reliability.

e Performance Requirements: Monitored processing times and resource utilization to
ensure efficiency targets were met.

Tools Utilized:

e Automated testing frameworks and monitoring tools collected performance data.
e User acceptance testing gathered direct user feedback.

5.5 REGRESSION TESTING
Regression testing ensured existing functionalities remained stable following updates.
Approach:

e Established automated regression test suites executed upon merging code into the main
branch.
e Included comprehensive unit, interface, and integration tests covering established features.

Automation Tools:

e GitLab CI/CD pipelines triggered automated regression tests.

Critical Features Protected:

e (Core functionalities (activation extraction, clustering) maintained stability.
e Ensured accuracy and reliability despite ongoing performance enhancements.

5.6 ACCEPTANCE TESTING

Acceptance testing demonstrated system compliance to the client, confirming adherence to
specified requirements.

37

Process:

e Developed test cases directly from Section 2.1 requirements.

e (ollaborated with client (Dr. Ali Jannesari/ISU SwAPP Lab) for test plan reviews and result
evaluations.

e Conducted live system demonstrations using representative datasets.

Client Involvement:

e Scheduled regular client meetings to present progress and incorporate feedback.
e Provided client access for independent system evaluation.

Criteria:

e Functional requirements satisfactorily met.
e Performance and usability achieved client expectations.

5.7 USER TESTING

We conducted user testing primarily through iterative demonstrations and feedback sessions with
our faculty advisor. During these sessions, our advisor exercised both the command-line interface
and the web-based visualizations—running activation extraction, navigating clusters via the
dendrogram and sunburst, and reviewing automatically generated labels.

The advisor’s reactions were consistently positive; they confirmed that the tools addressed core
interpretability needs and appreciated the intuitive visual layouts. Their interactive exploration
revealed minor usability issues—such as unclear button labels and navigation controls—which we
promptly refined. Overall, observing the advisor interact with the system validated our design
choices and guided final adjustments to improve clarity and workflow efficiency.

5.8 REsuLTS
We completed comprehensive testing and achieved the following outcomes:

e Unit Testing:
Successfully identified and resolved defects in clustering algorithms and parsing modules.
o Integration Testing:
Achieved seamless processing of datasets through the full pipeline on local and HPC
environments. Addressed and resolved data format compatibility issues across modules.
e System Testing:
Confirmed the system met functional requirements for small to medium datasets.

38

Performance tests demonstrated acceptable system efficiency.

e Regression Testing:

Implemented comprehensive automated regression tests in GitLab CI/CD pipelines.
Successfully identified and corrected regressions, notably within the activation extraction
module.

e Acceptance Testing:

Demonstrated system functionality met client requirements. Received positive feedback

regarding system performance, usability, and overall quality.
e Security Testing:

Identified no critical vulnerabilities through static code analysis and dependency scanning,

affirming robust security practices.

The conducted tests effectively validated compliance with specified requirements, demonstrating
that our delivered software meets both functional and non-functional expectations.

6 Implementation

Our implementation focused primarily on adapting and enhancing existing scripts from the
CodeConceptNet library. This refactoring served two core purposes: providing practical assistance
to a related team and allowing us to acquire essential familiarity with code concept extraction
methodologies central to our project.

Objective:

e Adapt and enhance existing scripts to align fully with project requirements, ensuring
improved code quality, modularity, and maintainability

Process:

e Code Analysis: Conducted an extensive review of CodeConceptNet scripts, thoroughly
documenting existing functionalities.

e Modularization: Refactored existing scripts to promote modularity, clarity, and
maintainability, laying a robust foundation for future development.

e Standardization: Ensured all scripts adhered strictly to PEP8 style guidelines, fostering
code consistency throughout the project.

Outcome:

e Established a structured, maintainable, and well-documented codebase aligned with our
architectural standards and project goals.

e Gained in-depth insights into methodologies related to activation extraction, clustering
algorithms, and automated labeling for latent concept analysis.

6.1 DESIGN ANALYSIS

39

Our implemented design successfully delivers core functionality with high reliability. Activation
extraction and clustering modules consistently produce meaningful groupings, as confirmed by unit
and integration tests (>60% coverage) and positive feedback from our advisor during user testing.
The modular pipeline structure and HPC integration on Nova ensure efficient processing of
moderately large datasets, and our CI/CD-driven deployments demonstrate stability across

environments.

However, some components underperform at scale: hierarchical clustering and real-time rendering
in the web app can become sluggish with very large activation sets, and prompt-driven automated
labeling occasionally produces inconsistent labels without manual correction. These issues stem
from late-stage performance tuning and reliance on external LLM services. In future iterations,
earlier profiling, incremental clustering strategies, and a caching layer for visualizations would

mitigate these limitations.

7 Ethics and Professional Responsibility

Engineering ethics and professional responsibility were integral throughout our project. We

adhered rigorously to professional and ethical standards, ensuring our decisions and actions

consistently prioritized public welfare, environmental sustainability, and social responsibility.

7.1 AREAS OF PROFESSIONAL RF,SP()NSIBII,ITY/C()DF.S OF ETHICS

Table 7.1 outlines how our team actively engaged with defined areas of professional responsibility

according to the Software Engineering Code of Ethics.

Table 7.1

Area of Responsibility

Definition (in our own
words)

Relevant Item from
Software Engineering
Code of Ethics

Description of Team
Interaction

Work Competence

Performing tasks with
high quality, integrity,
and professional skill.

Principle 3.01:
"Ensure that their
products and related
modifications meet
the highest
professional standards
possible."

We rigorously test our
code, follow best
coding practices, and
continually update
our skills to deliver a
reliable and efficient
software library.

Financial
Responsibility

Providing valuable
products and services

Principle 5.05:
"Ensure that any

We manage resources
efficiently, optimizing

40

that are cost-effective.

document upon
which they rely has
been approved, when
required, by someone
authorized to approve
it."

code to reduce
computational costs,
especially important
when utilizing HPC
resources.

Communication
Honesty

Sharing information
truthfully and clearly
with stakeholders.

Principle 2.05: "Keep
private confidential
information gained in
their professional
work, where such
confidentiality is
consistent with the
public interest and
consistent with the

law.

We maintain
transparent and
honest
communication
within the team and
with our client,
providing accurate
progress reports and
addressing issues
promptly.

Health, Safety,

Minimizing risks to

Principle 1.02:

By improving Al

Well-Being people's safety and "Approve software model interpretability,
well-being in our only if they have a we contribute to safer
work. well-founded belief software systems,

that it is safe, meets reducing the risk of
specifications, passes | errors in critical
appropriate tests, and | applications.

does not diminish

quality of life."

Property Ownership Respecting others' Principle 1.06: "Be We respect
property, ideas, and fair and avoid intellectual property
information. deception in all by using licensed tools

statements, and datasets, citing
particularly public sources appropriately,
ones, concerning and not misusing
software or related proprietary
documents, methods, | information.
and tools."

Sustainability Protecting the Principle 1.08: "Be We acknowledge the

environment and
promoting sustainable
practices.

encouraged to
volunteer professional
skills to good causes
and contribute to
public education
concerning the

environmental impact
of HPC usage and aim
to write efficient code
to minimize energy
consumption.

41

discipline."

Social Responsibility

Creating products
that benefit society
and communities.

Principle 1.01:
"Accept full
responsibility for their
own work."

Our project enhances
Al transparency,
promoting ethical Al
use and building
public trust, thereby
benefiting society at
large.

Performance and Improvement Areas

Performing Well: Communication Honesty

We excelled in maintaining transparent and accurate communication through regular meetings,
detailed documentation, and prompt issue resolution, which promoted stakeholder alignment and

trust.

Area for Improvement: Sustainability

Recognized the need to better manage environmental impacts of high-performance computing.
Future efforts will prioritize algorithmic optimizations for enhanced energy efficiency and

environmentally responsible computing practices.

7.2 FOUR PRINCIPLES

Table 7.2 maps each broader context area explicitly to four ethical principles—beneficence,

nonmaleficence, respect for autonomy, and justice:

Table 7.2
Broader Context | Beneficence Nonmaleficence | Respect for Justice
Area (Do Good) (Do No Harm) Autonomy
Public Health, Enhancing Preventing Empowering Providing
Safety, and software software errors users with equitable access
Welfare reliability to that could lead to | understandable | to safe
improve public harm. Al models. technology.
safety.
Global, Cultural, | Promoting Avoiding biases in | Respecting Ensuring fair
and Social ethical Al Al that harm cultural benefits of Al
practices specific groups. differences in Al | across societies.
worldwide. applications.

42

Environmental Developing Minimizing Supporting Advocating for
energy-efficient | energy stakeholder environmental
software to consumption to choices for justice in
benefit the reduce sustainable technology use.
environment. environmental options.

harm.

Economic Reducing Avoiding Allowing clients | Contributing to
development economic harm to make economic
costs to benefit through informed opportunities
organizations. cost-effective financial across

solutions. decisions. communities.

Important Context-Principle Pair (Beneficence, Public Health, Safety, Welfare):

Actively enhanced public safety through improved Al model interpretability, ensuring rigorous

testing and ethical adherence to support safer software applications.

Context-Principle Pair Needing Improvement (Nonmaleficence, Environmental):

Recognized environmental impacts of computationally intensive processes. Moving forward, we

will optimize energy usage and adopt sustainable computing practices to mitigate negative effects.

7.3 VIRTUES

Important Team Virtues

e Integrity: Maintained honesty, transparency, and strong moral principles across all actions,

fostering trust and accountability within the team.

e Collaboration: Promoted effective teamwork and shared responsibilities, ensuring

productive cooperation and the achievement of common goals.

o Excellence: Pursued the highest quality standards through rigorous testing, continuous

improvement, and professional growth.

Our commitment to engineering ethics and professional responsibility has remained consistent

throughout the project. We have continuously applied standards such as ISO/IEC TR 24027 for bias

mitigation and IEEE 1028 for quality assurance, and conducted regular reviews with our faculty

advisor to validate data handling, model interpretation, and resource use. As no significant ethical

issues emerged during development, we have maintained and reinforced our original ethical

framework through ongoing monitoring, documentation, and collaborative feedback.

43

8 Conclusions

8.1 SUMMARY OF PROGRESS

Throughout our project, we successfully delivered a structured Python library focused on enhancing
the explainability and interpretability of large language models (LLMs) trained on source code. Our
efforts resulted in:

e Refactored Existing Code: Adapted scripts from the CodeConceptNet library to establish
foundational infrastructure and domain understanding.

o Implemented Core Modules: Delivered comprehensive components, including data
parsing with Tree-sitter, activation extraction utilizing NeuroX, advanced clustering
algorithms, and an automated labeling module using DSPY2.

e Integrated High-Performance Computing: Successfully configured our system to run
efficiently on HPC clusters (Nova), addressing performance and scalability demands.

o Established Comprehensive Testing Frameworks: Developed and executed robust
testing strategies (unit, interface, integration, system, regression, acceptance, security
testing), ensuring system reliability and quality through automated CI/CD pipelines.

e Adhered to Ethical and Professional Standards: Prioritized public welfare, ethical Al
practices, sustainability considerations, and societal responsibility.

Reiterating Project Goals:
Our completed objectives include a scalable, user-friendly library enabling:

Precise activation extraction from neural network models.
Application of optimized clustering algorithms to identify latent concepts within source
code representations.

e Automated labeling of code datasets, significantly enhancing interpretability.

e Comprehensive evaluation methods aligning machine-learned concepts with
human-understandable properties.

Best Plan of Action (Future Directions):

e Algorithmic Optimization: Continuously improve the performance and efficiency of
activation extraction and clustering algorithms, especially in HPC contexts.

e Enhanced Testing and Coverage: Expand beyond baseline testing coverage to ensure
sustained robustness and reliability across future enhancements.

e Improved Documentation and User Experience: Continuously refine user
documentation, enhance API clarity, and optimize the graphical user interface for greater
accessibility and ease of use

44

8.2 VALUE PROVIDED

Our design effectively addresses user needs by making large language model (LLM) interpretability
more accessible, particularly benefiting researchers and developers who rely on transparency to
trust Al-generated code. By integrating clustering algorithms, activation visualization, and
automated labeling, the solution significantly reduces the complexity of understanding model
behaviors. Faculty advisor testing verified our solution successfully uncovers meaningful code-level
patterns, demonstrating clear potential to improve code reliability, accelerate debugging processes,
and promote safer software development within the broader context of explainable Al.

8.3 NEXT STEPS

Future work should prioritize further optimization of the clustering and visualization processes for
large-scale datasets, improving scalability within high-performance computing environments.
Additionally, extending support for additional programming languages and integrating enhanced
real-time interactive visualizations could greatly expand usability and practical value. Finally,
deeper exploration into ethical implications, such as automated bias detection in model activations,
would strengthen the broader societal impact of this work.

9 References

[1] V. Dalvi, A. Gautam, N. Durrani, H. Sajjad, Y. Belinkov, and J. Glass, “NeuroX: A Toolkit for
Analyzing Individual Neurons in Neural Networks,” in Proc. 2019 Conf. North American Chapter of

the Association for Computational Linguistics (Demonstrations), Minneapolis, MN, USA, Jun. 2019,
pp. 169-174.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “codezvec: Learning Distributed Representations
of Code,” in Proc. ACM on Programming Languages, vol. 3, no. POPL, Art. 40, Jan. 2019.

[3] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust You?” Explaining the Predictions of
Any Classifier,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD),
San Francisco, CA, USA, Aug. 2016, pp. 1135-1144.

[4] M. Ancona, E. Ceolini, C. Oztireli, and M. Gross, “Towards Better Understanding of
Gradient-Based Attribution Methods for Deep Neural Networks,” in 6th Int. Conf. Learning
Representations (ICLR), Vancouver, Canada, Apr. 2018.

[5] International Organization for Standardization, Systems and Software Engineering—Systems and
Software Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models,
ISO/IEC 25010:2011, 2011.

45

[6] International Organization for Standardization, Information Technology—Artificial Intelligence
(Al)—Bias in Al Systems and Al-Aided Decision Making, ISO/IEC TR 24027:2021, 2021.

[7] IEEE, IEEE Standard for Software Reviews and Audits, IEEE Std 1028-2008, 2008.10 Appendices

Appendix 1: Operating Manual & Code

Detailed instructions for use of our software, as well as all production code is available for viewing
on our GitLab repository.

https://git.ece.iastate.edu/kbouwman/Explainable Al for Source Code Applications

Appendix 2: Team Contract

A2.1 TEAM MEMBERS

Manjul Balayar Rayne Wilde Sam Frost Akhilesh Nevatia Ethan Rogers

https://git.ece.iastate.edu/kbouwman/Explainable_AI_for_Source_Code_Applications

46

A2.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Software Engineering and Development
Related Requirements: Develop a scalable, maintainable, and well-documented Python library
(Requirements 2.1.1.a, 2.1.2.3, 2.1.2.b).

Skills Utilized:

Proficiency in Python programming.
Experience applying software design principles, modular code development, and adhering
to PEPS style guidelines.

e Effective use of version control (Git) and project management tools (GitLab).
Ability to implement comprehensive unit tests, ensuring at least 60% code coverage.
Experience packaging, distributing, and deploying Python libraries.

Machine Learning and Data Analysis
Related Requirements: Activation extraction, implementation of clustering algorithms, model
interfaces, automated labeling (Requirements 2.1.1.a, 2.1.1.b, 2.1.1.g, 2.1.1.h).

Skills Utilized:

e Deep understanding of neural network architectures and deep learning frameworks (e.g.,
PyTorch, TensorFlow).
Proficiency with clustering techniques suitable for high-dimensional activation data.
Knowledge and application of model interpretability methods.

e (apability to analyze and process large-scale datasets efficiently.

Code Parsing and Analysis
Related Requirements: Parsing source code files, including extending support for languages not
natively handled by Tree-sitter (Requirements 2.1.1.e, 2.1.1.f).

Skills Utilized:

Expertise in using Tree-sitter for code parsing.
Strong understanding of abstract syntax trees (ASTs) and compiler theory.
Ability to preprocess and analyze source code across various programming languages.

Problem-solving capabilities to extend parsing functionalities for unsupported languages
(such as OpenMP).

High-Performance Computing (HPC) and Optimization
Related Requirements: Efficiently processing large datasets, ensuring scalability, HPC integration
(Requirements 2.1.3.a, 2.1.1.a).

47

Skills Utilized:

e Familiarity with HPC environments and job scheduling tools like SLURM, specifically on
Iowa State’s Nova HPC clusters.

e Experience in parallel computing and distributed systems.
Proven ability to optimize code for enhanced performance and scalability.
Handling computational challenges associated with large-scale data processing.

Ethical Al Practices and Professional Responsibility
Related Requirements: Addressing biases in Al systems, compliance with ethical guidelines and
engineering standards (Requirements 2.2.3.b, 2.1.1.).

Skills Utilized:

Strong understanding of Al engineering fundamentals and responsible Al principles.
Familiarity with standards such as ISO/IEC TR 24027:2021 and IEEE ethical codes.

e Demonstrated commitment to ethical conduct, professional responsibility, and public
welfare.

e Skill in integrating ethical considerations into technical project deliverables.

A2.3 SKILL SETS COVERED BY THE TEAM

Skill Area Team Members Covering This Skill Area
Software Engineering and Development All members
Machine Learning and Data Analysis All members
Code Parsing and Analysis All members
HPC and Optimization All members
Ethical Al Practices All members

A2.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team adopted and successfully implemented Agile methodologies throughout the project's
lifecycle, enabling flexibility, adaptability, and responsive management of evolving project
requirements.

A2.5 INITIAL PROJECT MANAGEMENT ROLES

Team members rotated the Scrum Master/Team Lead role weekly, ensuring that all members
contributed equally to leadership and project management responsibilities. Regardless of the
current Scrum Master, each member actively participated in engineering tasks and
decision-making.

48

A2.6 Team Contract

Team Members:

Manjul Balayar
Rayne Wilde
Sam Frost
Akhilesh Nevatia
Ethan Rogers

Team Procedures

Day, time, and location (face-to-face or virtual) for regular team meetings: Wednesday,
12:30 PM, Parks Library / WebEx

Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face): Discord

Decision-making policy (e.g., consensus, majority vote): Majority vote

Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived): Team members are responsible for tracking their own hours
throughout the semester, but a set weekly rotation will be used to divide tasks like
summarizing group meetings, and non individual portions of the weekly report.

Participation Expectations

Expected individual attendance, punctuality, and participation at all team meetings:
Attend all weekly meetings, unless mentioned to the team otherwise

Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
Complete assigned issues/tasks as well as rotating responsibilities (weekly meeting
summary, etc)

Expected level of communication with other team members: Be respectful, Provide
constructive feedback, Take meeting minutes, Keep documentation on git and
discord, Respond in a reasonable amount of time.

Expected level of commitment to team decisions and tasks: Take full ownership of
responsibilities assigned, Communicate with team members regarding progress
made, Take active part in team meetings and discussions.

Leadership

Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.): As issues are created, the person who is
assigned to an issue is responsible for the issue and takes “ownership” of the issue.
Strategies for supporting and guiding the work of all team members:
a. Support can come in the form of
i. Taking a sub-task

49

1. task from an issue can be delegated to other team members
but the team member responsible for the issue is still
responsible for the quality/checking the task

b. Collaboration
i. pair-programming
ii. sounding boards
c. Reviewer/Tester
3. Strategies for recognizing the contributions of all team members:
a. Look at commits
b. Author tags
c. wiki’s

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.
e Manjul Balayar:

o Majoring in Software Engineering with a minor in Data Science. Core experience
and interests lie in Data Science, ML, and DL. Have experience in data processing,
modeling, full stack development, etc.

e Rayne Wilde:

o ML Experience:

m Academic: 4 years
m Industry: 3 years

o Compiler Engineering:

m Industry: 2 years

o Data Science / Statistics:

m Industry: 7 years
o Quantum Computing:
m Academic: 1year
m Industry: 2 years
e Sam Frost:
o Academic Experience
m Full stack web development, embedded systems, various programming
languages
o Industry Experience
m Cloud Software Development (AWS)
m Linux
m Python, Java
m [T hardware/software support
e Akhilesh Nevatia:

o Love building and rapid prototyping, prefer backend side of things, enjoy decoding
complicated algorithms and have worked in Applied-Al, ML and Stego Research,
Avionics and Venture Capital Research

50

e Ethan Rogers:
o Experience in the hardware/software codesign of machine learning algorithms for
efficient yet accurate results
Hardware background from EE curriculum
Strong research interests in the deep learning and unsupervised learning space

2. Strategies for encouraging and supporting contributions and ideas from all team members:
Our strategy for encouraging ideas or contributions from each team member will
come in the form of promoting learning and skills development by creating a
productive and collaborative environment. By ensuring all team members have
their ideas heard and their questions answered, more creative and productive
discussions will take place, leading to an improved project solution.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)

a. To identify collaboration/inclusion issues, we will use each member’s
productivity and communication as a measurement tool. A team member
who is lacking in communication and results should be asked if they have
any roadblocks in the way of their success.

b. To resolve issues, the team will ask whoever it is that might be facing a
challenge what the team can do to aid them. It should be made a priority by
each member of the team to resolve such issues.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
a. Make progress that aligns with the goals and objectives of our advisor and
client
b. Build and develop professional skills
c. Implement project management skills learned from school and industry.

2. Strategies for planning and assigning individual and team work:
a. Tasks will be distributed based on the needs of the group, individual
strengths and weaknesses, and the preference of team members.
3. Strategies for keeping on task:
a. Use the Epic/Milestone/Issue/Task features to make incremental progress
towards larger goals.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
a. Verbal/Discord warning. Advisor will be made aware of infraction.
2. What will your team do if the infractions continue?
a. Inform professors of the repeated infractions.

* *% *

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.
¢) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Akhilesh Nevatia DATE 9/19/24
2) Ethan Rogers DATE 9/19/24
3) Sam Frost DATE 9/19/24
5) Rayne Wilde DATE 9/19/24

6) Manjul Balayar DATE 9/19/24

51

	1.​Introduction
	2.​Requirements, Constraints, And Standards
	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	1. Risk of Rapid Advancements in AI Rendering Current Approaches Obsolete
	2. Technical Challenges with AST Tools or Large Language Models (LLMs)
	3. Time Constraints Impacting Project Delivery and Quality

	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	Consolidating Distributed Libraries
	Developing a Standardized Library
	Defining Machine Testing Parameters

	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3​FINAL DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visuals
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	
	4.4 TECHNOLOGY CONSIDERATIONS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3​INTEGRATION TESTING
	5.4​SYSTEM TESTING
	5.5​REGRESSION TESTING
	5.6​ACCEPTANCE TESTING
	5.7​USER TESTING
	5.8​RESULTS

	6 Implementation
	6.1 DESIGN ANALYSIS

	7 Ethics and Professional Responsibility
	7.1​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES

	8 Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 References
	Appendix 1: Operating Manual & Code
	Appendix 2: Team Contract
	A2.6 Team Contract

